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Abstract: Integrated microwave photonics (MWP) is an intriguing field that leverages integrated 

photonic technologies for the generation, transmission, and manipulation of microwave signals in 

chip-scale optical systems 1,2. In particular, ultrafast processing and computation of analog 

electronic signals in the optical domain with high fidelity and low latency could enable a variety 

of applications such as MWP filters 3-5, microwave signal processing 6-9, and image recognition 

10,11. An ideal photonic platform for achieving these integrated MWP processing tasks shall 

simultaneously offer an efficient, linear and high-speed electro-optic (EO) modulation block to 

faithfully perform microwave-optic conversion at low power, and a low-loss functional photonic 

network that can be configured for a variety of signal processing tasks, as well as large-scale, low-

cost manufacturability to monolithically integrate the two building blocks on the same chip. In this 

work, we demonstrate such an integrated MWP processing engine based on a thin-film lithium 

niobate (LN) platform capable of performing multi-purpose processing and computation tasks of 

analog signals up to 256 giga samples per second (GSa/s) at CMOS-compatible voltages. By 

integrating a high-speed EO modulation block and a multi-purpose low-loss signal processing 

section on the same chip fabricated from a 4-inch wafer-scale process, we demonstrate high-speed 

analog computation, i.e., first- and second-order temporal integration and differentiation with 

mailto:cwang257@cityu.edu.hk


2  

processing bandwidths up to 67 GHz and computation accuracies up to 98.0 %, and deploy these 

functions to showcase three proof-of-concept applications, namely, ordinary differential equation 

(ODE) solving, ultra-wideband (UWB) signal generation and high-speed edge detection of images. 

We further leverage the image edge detector to enable a photonic-assisted image segmentation 

model that could effectively outline the boundaries of melanoma lesion in medical diagnostic 

images, achieving orders of magnitude faster processing speed and lower energy consumption than 

conventional electronic processors. Our ultrafast LN MWP engine could provide compact, low-

power, low-latency, and cost-effective solutions for future wireless communications, Internet of 

things, high-resolution radar systems and photonic artificial intelligence. 
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Main 

The rapid expansion of wireless networks, Internet of Things (IoTs), and cloud-based services is posing 

pressing challenges on the electronic bandwidth, processing speed, and power consumption of underlying 

radio frequency (RF) systems 12. The burgeoning artificial intelligence (AI) technologies also demand 

ultrahigh-speed, low-latency, and low-power processing and computation of analog signals much beyond 

those offered by traditional electronic integrated circuits. Microwave photonics (MWP) technology provides 

effective solutions to address these challenges through the usage of optical components to perform microwave 

signal generation, transmission and manipulation tasks 1. Its wide operation bandwidth and low loss 

characteristics also allow ultrahigh-speed and long-distance signals analysis and detection missions 1. Recently, 

the surge of photonic integration technologies has further led to a dramatic reduction in the size, weight, and 

power (SWaP) of MWP systems with enhanced robustness and functionalities, termed integrated MWP 2. 

Impressive demonstrations of integrated MWP applications include arbitrary RF waveform generation 13,14, 

true-time delay beamforming 15, instantaneous frequency measurement 16 and so on.  

Despite the tremendous progress, integrated MWP systems still face substantial challenges in performing 

ultrahigh-speed analog signal processing tasks with chip-scale integration, high fidelity, and low power at the 

same time. An ideal photonic platform to meet these demands should support electro-optic (EO) modulators 

with low drive voltages, broad bandwidths and high linearity to faithfully convert microwave signals into 

optical signals, as well as a versatile low-loss functional device toolbox for further processing the converted 

signals in the optical domain. To date, most MWP applications have been demonstrated in silicon photonics   

7,8,13,14,16  owing to its low-cost, large-scale fabrication readiness and the wide availability of functional devices. 

However, the free carrier-based modulation mechanism 17 in silicon is intrinsically accompanied with 

nonlinear EO response, large carrier-absorption loss, limited response speed, and unsatisfactory power-
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handling ability, resulting in critical trade-offs between the signal fidelity, power consumption, operation 

bandwidth and signal-to-noise ratio achievable in silicon MWP systems. Indium phosphide (InP) is another 

attractive platform for MWP systems with potential for monolithic integration of active and passive photonic 

elements on the same chip 4,6. However, the relatively large propagation loss and small index contrast in InP 

waveguides 2, together with yield issues, significantly hurdle the performances and functionalities achievable 

in the signal processing section of future large-scale MWP systems. While silicon nitride (SiN) 18,19 is an 

excellent MWP platform by virtue of its ultra-low propagation loss and high-power handling ability, the lack 

of second-order nonlinearity prevents the realization of high-speed EO modulators in a monolithic SiN 

platform.  

As a result of these material trade-offs, many integrated MWP systems have been realized by combining 

silicon or SiN photonic chips with traditional off-the-shelf lithium niobate (LN) modulators. This approach 

has enabled advanced computation and information processing tasks, such as differentiation, integration and 

Hilbert transformation 20-26,  at the expense of increased bulkiness, system complexity and power consumption. 

Such signal processing and computation have also been demonstrated in all-optical circuits 6,27,28, offering 

potential processing bandwidths up to several THz 28. However, the processed signals in these demonstrations 

are usually limited to simple Gaussian or Gaussian-derived waveforms generated by contemporary all-optical 

techniques, e.g., mode-locked lasers, while signals urgently in need of high-speed processing capability today 

are often much more complicated and arbitrary and can only be accessed from the electronic domain. Another 

potential solution is heterogeneous technology 16,29-31 that integrates III-V lasers/photodetectors and silicon 

modulators with low-loss SiN passive photonics via hetero-epitaxial growth or wafer bonding, while featuring 

additional cost and complexity in fabrication.  

The recently emerged thin-film lithium niobate platform is a promising candidate to address these urgent 
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demands and critical challenges by integrating efficient EO convertors and low-loss signal processors on the 

same chip 32. The Pockels effect in LN is intrinsically linear, instantaneous and low-loss, ideally suited for 

realizing high-fidelity microwave-optic signal conversion with low power consumption and broad bandwidths 

33. Recently, many miniaturized and high-performance LN modulators have been demonstrated, exhibiting 

bandwidths covering the entire microwave and millimeter-wave bands 34-36, CMOS-compatible drive voltages 

37,38, and ultra-high linearity performance 39. Moreover, a full range of high-performance and low-loss 

functional devices are now endowed on the same platform, including ultrahigh-Q microresonators 40, 

programmable filters 41, efficient frequency converters/shifters 42 as well as low-loss delay lines 43.Efforts to 

scale up these elements into LN photonic integrated circuits (PIC) with low propagation loss and wafer-scale 

manufacturability have recently further boosted the cost effectiveness and commercial relevance towards a 

potentially high-performance, large-scale, and multi-purpose LN MWP system 44,45.  

Here, we fulfill this promise by demonstrating a high-fidelity, broadband and low-power-consumption MWP 

system leveraging a 4-inch wafer-scale LN platform, realizing high-speed analog computation of microwave 

signals up to 256 GSa/s with multi-purpose functionalities, i.e., first- and second-order temporal integration 

and differentiation. Building upon these computation functions, we show three proof-of-concept applications, 

including ordinary differential equation (ODE) solving, ultra-wide bandwidth (UWB) signal generation, and 

high-speed edge-feature detection of images. Furthermore, we plug the photonics-assisted image-edge 

detector, with orders of magnitude higher computing speed and lower energy consumption than traditional 

electronics-based image-edge detection algorithms, into a neural network-based image segmentation model 46 

and showcase the effective identification of melanoma lesion outlines in medical diagnostic images.  

Results  

Figure 1a shows the schematic illustration of our multi-purpose MWP system on LN platform, consisting of 
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an efficient EO modulation section for transferring high-speed microwave signals into optical domain, and a 

low-loss signal processing section for realizing the analog computation functions, including first- and second-

order temporal integration and differentiation. The PICs are directly patterned on a 4-inch thin-film LN wafer 

(Fig. 1b) using an ultraviolet (UV) stepper lithography system (see Methods). Our LN MWP platform supports 

a variety of high-performance device building blocks, including microring resonators with ultrahigh intrinsic 

quality (Q) factors up to 6 million (corresponding to propagation loss ~ 5 dB/m), low-voltage and broad 

bandwidth (> 67 GHz) intensity/phase modulators with advanced slotted-electrodes 47, add-drop microring 

resonators as temporal integrators, unbalanced Mach-Zehnder interferometers (MZIs) as differentiators, as 

well as respective cascaded versions for second-order integration and differentiation tasks. The corresponding 

microscope images of these photonic building blocks and their measured critical performance metrics are 

shown in the Fig. 1c. False-colored scanning electron microscope images shown in Fig. 1d highlight details 

of the waveguide sidewall, the coupling region of a microring, the cross-section of a waveguide, and a multi-

mode interference (MMI) coupler, respectively. Based on these MWP building blocks, we next discuss two 

ultrahigh-speed microwave signal computation processes, i.e. temporal integration and differentiation, as well 

as their applications.  

High-speed microwave photonic temporal integrator 

Figure 2a illustrates the working principle of our high-speed MWP temporal integrator, which consists of an 

MZI intensity modulator and add-drop microring resonators, and is designed to take the temporal integration 

of a complex input microwave signal and output in the form of optical intensity (see Methods). An integration 

task in the time domain is equivalent to a frequency response of the system  𝐻(ω) =
1

𝑗(ω−ω0)
 in the frequency 

domain 27, where j = 1− , ω is the optical angular frequency and ω0 is the carrier frequency of the signal to 

be processed. Here we adopt add-drop microring resonators to serve as integrators 6,22,27, where the Lorentzian 
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lineshape approximately follows the above frequency response within the resonance bandwidth, as shown in 

Fig. 2c. 

 

Fig. 1. Wafer-scale LN-based MWP signal processing engine and its building blocks. a Schematic diagram of LN-

based MWP processing engine, consisting of a high-speed EO modulation section that faithfully converts analog 

electronic signals into optical domain, and a low-loss multi-purpose photonic processing section. b Photography of 4-

inch wafer-scale LN photonic integrated circuits patterned using a UV stepper lithography system. c Microscope images 

and key performance metrics of the fundamental building blocks of our high-speed MWP systems, including micro-

resonators with intrinsic quality factor ~ 6 × 106, low-driving-voltage and broad bandwidth intensity and phase 

modulators for signal encoding, add-drop ring resonators as integrators, unbalanced MZIs as differentiators, as well as 

cascaded rings and MZIs as second-order integrators and differentiators. d False-color scanning electron micrographs 

(SEM) of the devices, showing the sidewall of a waveguide, the coupling region of a micro-resonator, the cross-section 

view of a waveguide and a multi-mode interference (MMI) coupler, respectively. 

This first-order integrator has a measured free spectral range (FSR) of 80 GHz, a loaded Q factor of ~ 0.9 

million measured at the drop port, which corresponds to a photon lifetime of 700 ps (Fig. 1c). We characterize 

the performance of our LN-based MWP integrator using the experimental setup shown in Fig. 2b. Notably, 

the measurements are performed using small signals (peak voltage = 500 mV) directly generated from an 

arbitrary-waveform generator (AWG) without the use of microwave amplifiers, enabled by the low-driving 
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voltage and high signal-to-noise ratio of our LN modulators, promising for future low-power-consumption 

and high-fidelity MWP systems. The integration results in the form of optical intensity are recorded by a high-

speed photodetector (PD) through homodyne detection with the optical carrier itself when the modulator is 

biased at the quadrature point. (see Methods) 

We first test the basic performance of our first-order integrator by injecting a Gaussian pulse with a full width 

at half maximum (FWHM) of 90 ps. The output signals in Fig. 2d (i) clearly show a step-like waveform with 

an integration time up to ~ 600 ps (defined as the decay time to reach 80 % of the maximum intensity 27). 

Using resonators with even higher Q-factors could further increase the integration time, at the expense of 

lower throughput due to narrower resonance linewidths (or operation bandwidths) 6. Next, we demonstrate 

coherent integration of more advanced waveforms by injecting in-phase (ii) and out-of-phase (iii) doublet 

pulses, as well as triplet pulses (iv), the corresponding results of which are shown in Fig. 2d. Specifically, the 

results for the in-phase doublet pulses (ii) feature a clear double-step function due to the constructive addition 

of the two waveforms, and the duration time of the step profile matches the interval between the two pulses. 

Such functions could potentially find applications in high-speed bit counting. In contrast, when the two pulses 

are out of phase (iii), the time integral of the second optical pulse cancels with that of the first one, leading to 

a rapid return to the baseline. Different duration time can be obtained by setting the position of the second 

pulse to realize signal memory functions 48. We then input a more complex triplet pulse (iv) to verify the 

capability of processing complicated RF signals, the result of which shows an average accuracy of 95.9 % 

compared with the ideal output. Based on the results of the first-order temporal integrator, we further 

demonstrate second-order integration function by cascading two microring resonators with aligned resonance 

peaks (Fig. 2c) (see Methods). When injecting a single Gaussian pulse (FWHM ~ 120 ps), the corresponding 

output (Fig. 2d, v) matches well with the ideal prediction, with an average accuracy of 95.8 % within the 
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device lifetime, and shows a much longer rise time than the duration of the input pulse, indicating the effective 

realization of second-order integration function.  

We then apply this integrator to showcase our first MWP application, i.e. solving ordinary differential 

equations (ODE) for high-speed electronic signals, expressed as: 
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑘𝑦(𝑡) = 𝑥(𝑡), where x(t) represents 

the input RF signal, y(t) is the solution to be determined, and k represents an arbitrary constant 22. This basic 

ODE can be utilized to model a broad range of basic engineering systems and physical phenomena, such as 

temperature diffusion processes and automatic control systems 22,49. The process of solving this ODE in the 

time domain could be described canonically as an integration function embedded inside a feedback loop, 

which is equivalent to a Lorentzian frequency response of 𝐻(ω) =
1

𝑗(ω−ω0)+𝑘
 (Fig. 2e). We achieve this 

Lorentzian frequency response again using an add-drop ring resonator, where the loaded Q factor determines 

the constant k in the ODE 22(see Methods). As a proof of concept, we fabricate and test three different ring 

resonators with Q factors of 4.8×105, 1.7×105, and 0.8×105 by controlling the coupling gaps (Fig. 2f), 

corresponding to k values of 1.24 ns-1, 3.49 ns-1 and 7.44 ns-1, respectively. During the testing, we use 400 ps 

super-Gaussian pulses as input signals to better distinguish the solutions from the input 49. The respective 

results with different k constants in Fig. 2g show excellent agreement with simulated solutions (dashed lines) 

obtained by an ideal ODE solver, with an average computation accuracy of 98.1 %. Compared with algorithms 

in traditional electronics that require multiple iterations, our MWP system solves the ODE almost 

instantaneously as photons pass through, significantly improving the processing speed while maintaining 

excellent computation accuracy. Further equipping the resonators with thermo-optic or EO tunable couplers 

to actively control the loaded Q factor could enable a tunable ODE solver with variable coefficients to address 

more complex practical application scenarios 50.  
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Fig. 2. High-speed microwave photonic temporal integrator. a. Working principle of our MWP temporal integrator. 

An integration task in the time domain is equivalent to a frequency response of 𝐻(ω) = 1/𝑗(ω − ω0). b. Experimental 

setup for the measurement of the MWP integrator. Inset shows a microscope image of the device. AWG, arbitrary 

waveform generator; FPC, fiber polarization controller; EDFA, erbium-doped fiber amplifier; PD, photodetector. c. 

Measured (solid) and ideal (dashed) transmission for the first- and second-order integrators. d. Normalized measured 

temporal responses of the integrator (blue solid), together with simulated (red dashed) and ideal (green dashed) responses, 

for (i) first-order integration of a single Gaussian pulse showing an integration time of 600 ps, (ii) first-order integration 

of an in-phase doublet pulse featuring a clear double-step profile, (iii) first-order integration of an out-of-phase doublet 

pulse, showing a rapid return to the baseline when the second pulse comes in, (iv) first-order integration of a triplet pulse, 

and (v) second-order integration of a single Gaussian pulse. Insets: the corresponding input RF waveforms. e. Working 

principle of the ordinary differential equation (ODE) solving system. f. Measured frequency response of the ODE solvers 

with different Q factors corresponding to three different k coefficients. g. Normalized measured (solid) and simulated 

(dashed) ODE solutions of a 400-ps input super-Gaussian pulse (grey) for different k coefficients.  

High-speed microwave photonic temporal differentiator  

The second demonstrated high-speed MWP computation task is temporal differentiation, which takes the 
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derivative of the input microwave signal and output in the form of optical field or intensity. Here, we deploy 

a frequency-chirp-based differentiation scheme 20 leveraging an EO phase modulator and an MZI-based 

differentiator on the LN platform (see Methods). The basic working principle is shown in Fig. 3a: the input 

RF signal x(t) is first loaded on a continuous-wave optical signal by the phase modulator, leading to an 

instantaneous optical phase of  𝜔0𝑡 + 𝛽𝑥(𝑡), where ω0 is the carrier frequency of the signal and 𝛽 is the 

modulation index. This induces an instantaneous frequency chirp of 𝜔0 + 𝛽
𝑑𝑥(𝑡)

𝑑𝑡
 that exactly follows the 

differentiation of the input signal 
𝑑𝑥(𝑡)

𝑑𝑡
. The chirped frequency information is then mapped into optical field 

or intensity using a signal processing unit, i.e. an unbalanced MZI, which is carefully designed to provide the 

desired frequency response. Specifically, we achieve field-to-field (field-to-intensity) differentiation by 

biasing the MZI at the null (quadrature) point, where the output optical field (intensity) is linearly proportional 

to the optical frequency 20. The top panel of Fig. 3c shows the measured optical transmission spectrum of the 

fabricated unbalanced MZI as a first-order differentiator, consistent with the intended linear frequency 

response within a processing bandwidth of 85 GHz, limited by FSR. Even higher processing bandwidths could 

be achieved using MZIs with larger FSRs, however, at the expense of lowered differentiation efficiency 

(determined by the spectral slope of the frequency response) 20. We could also achieve second-order 

differentiation by cascading two unbalanced MZIs with aligned null wavelengths, the frequency response of 

which is shown in the bottom panel of Fig. 3c with a faithful processing bandwidth of 65 GHz.  

We test the basic field-to-field/intensity differentiation performance by injecting a sequence of RF signals 

including Gaussian pulses, square pulses and stepped pulses [Fig. 3d (blue)] into the phase modulator, using 

the experimental setup shown in Fig. 3b. All the demonstrations are carried out in the small-signal regime. 

The red trace in Fig. 3d shows the corresponding measured field-to-field differentiation results when the MZI 

is biased at the null point, where the pulse height is determined by the temporal rising/falling slope of input 
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signals. Here the output signals are positive for both rising and falling edges since the differentiation result in 

the form of optical field is measured by a direct intensity detection at the PD showing |
𝑑𝑥(𝑡)

𝑑𝑡
|

2
. In contrast, the 

field-to-intensity differentiation results (yellow trace in Fig. 3d) are carried by optical intensity and measured 

through a homodyne detection similar to that used in field-to-intensity integration experiments, showing 

positive (negative) pulses at rising (falling) slope of input signals. The right panels show blow-up views of the 

output waveforms, exhibiting good agreement with the simulation ones.  

To showcase the unique ultrahigh-speed signal processing capability of our LN MWP system, we inject ultra-

short Sinc pulses with a main-lobe FWHM duration of ~ 9.6 ps (corresponding to an analog bandwidth of ~ 

62 GHz, limited by the bandwidth of our oscilloscope, as shown in the top right inset of Fig. 3e) to the device 

and obtain field-to-intensity differentiation result (bottom left panel in Fig. 3e) consistent with simulation, 

with an average computation accuracy of 98.0 % (see Methods).  The corresponding Fourier spectrum of the 

differentiated signal is clearly reshaped from the initial signal, as shown in bottom right panel in Fig. 3e. We 

further verify that our devices can support accurate differentiation operations at least up to 67 GHz, by 

injecting sawtooth signals at different repetition rates and monitoring the optical spectra of output 

differentiation signals. Ideally, the derivative of a sawtooth signal features infinite numbers of frequency 

components at integer multiples of the fundamental frequency. In our real system, the analog bandwidth of 

the AWG (70 GHz) could faithfully preserve the first three harmonics of a 20-GHz sawtooth signal, which 

corresponds to a three-step-like signal in the time domain (blue solid line in the top left panel of Fig. 3f). After 

passing through the differentiator, the directly recorded time-domain signal (bottom left panel) and the 

measured optical spectrum (right panel) both show good agreement with the simulated result when considering 

only the first three harmonics, i.e. 20, 40, and 60 GHz. At even higher frequencies where the third harmonic 

is beyond the bandwidth of our oscilloscope for a direct time-domain measurement, we could still infer the 
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differentiation performance of our MWP processor by monitoring the output optical power of the third 

harmonic and comparing with the simulation results. The results confirm that our MWP temporal differentiator 

could reliably process input analog signals at frequencies up to 67 GHz, currently limited by other test 

equipment including AWG, RF probes and cables. In addition, we test the second-order field-to-field 

differentiation performance by injecting a 120-ps Gaussian pulse to the cascaded MZI device (Fig. 3g), which 

is also in line with the expected result.  

One attractive MWP application based on the differentiator is the generation of UWB signals, an emerging 

wireless protocol with wide bandwidth (3.1-10.6 GHz) and low power spectral density (< 41.3 dBm/MHz) for 

short-range high-throughput wireless communications and sensor networks 51 (Fig. 3h). Here we demonstrate 

the generation of UWB carrier pulses by performing field-to-intensity differentiation of Gaussian monocycle 

pulses with FWHM ~ 100 ps (Fig. 3i). The differentiation shows an anti-symmetric doublet pulse with an 

average accuracy of 97.4% compared with the ideal response. The corresponding RF spectrum of the output 

UWB pulse is shown in Fig. 3j, featuring a center frequency of 6.1 GHz and a 10-dB bandwidth of 7.3 GHz, 

with a fractional bandwidth of 120 %, in accordance with the Federal Communications Commission (FCC) 

regulations 51. The demonstrated UWB signal generation on our LN MWP platform could provide compact 

and cost-effective solutions for next-generation wireless communications and remote sensing systems with 

seamless compatibility with optical networks.  
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Fig. 3. High-speed microwave photonic temporal differentiator. a. Working principle of the frequency-chirp-based 

MWP temporal differentiator. Input RF signal x(t) is first loaded on an optical carrier by a phase modulator to induce an 

instantaneous frequency chirp that follows the differentiation of the input signal. The chirped frequency information is 

then projected into optical field or intensity through an unbalanced MZI biased at the null or the quadrature point, 

respectively. b. Experimental setup for the measurement of MWP differentiator. Inset shows a microscope image of the 

device. c. Measured and ideal frequency response for the first- and second-order differentiators. d. Measured field-to-

field differentiation response (red) and field-to-intensity differentiation results (yellow) for a sequence of input RF signals 

(blue). Blow-up panels show the measured and ideal results for a Gaussian pulse and a rectangle pulse. e. Measured field-

to-intensity differentiation result (yellow solid), together with the ideal response (red dashed) for an ultrafast input Sinc 

pulse with FWHM of main lobe ~ 9.6 ps (blue). Right panel shows the corresponding Fourier spectra of the Sinc pulse 

(top) and its differentiation form (bottom) with an analog bandwidth of 62 GHz. f. Measured (yellow solid) and simulated 

(red dashed) field-to-intensity differentiation result (bottom left) for a 20-GHz sawtooth signal (top left). The actual input 

signal (blue) deviates from an ideal sawtooth (red dashed) since only the first three harmonics are preserved. Right panel 

shows the measured (black) and simulated (red) optical spectra of the differentiated signal, clearly resolving the first 

three sidebands. g. Second-order field-to-field differentiation results for a Gaussian input pulse as shown in the inset. h. 
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Illustration of the power spectrum density (P.S.D.) and frequency range of UWB signal compared with GPS and 

Bluetooth. i. Measured (yellow solid) and ideal (red dashed) UWB monocycle pulse generated by field-to-intensity 

differentiation of a Gaussian pulse (inset). j. Measured RF spectrum of the generated UWB signal from 0 to 15 GHz. Red 

dashed line shows the power spectrum mask regulated by Federal Communications Commission (FCC).  

High-speed photonic-assisted image segmentation system 

Finally, we show our high-speed LN photonic processing engine could enable applications beyond traditional 

MWP-related scenarios. As an example, we realize a photonic-assisted image edge detector for segmentation 

of medical images, which can provide quantitative analysis to help clinicians conduct accurate disease 

diagnosis and treatment. The extraction of image edge features is realized by performing field-to-field 

differentiation operations on a time-domain data stream serialized from 2D images (see Methods). We first 

showcase the power of our edge-feature detector by feeding the system with a 250×250-pixel ‘CityU’ logo, 

serialized as a 256 GSa/s data stream. The temporal differentiation and edge detection functions are performed 

“on-the-fly” within a short time (t=250×250×
1

256 GSa/s
 = 244 ns) and captured by a real-time oscilloscope. 

We de-multiplex the captured time-series data back into matrix format to form the reconstructed image, 

showing clearly resolved edge features with 96.6 % accuracy compared with the simulated results (Fig. 4a). 

Importantly, the demonstrated image processor is three orders of magnitude faster and consumes lower energy 

than performing traditional algorithms in an electronic computer (see Methods). The processing speed is 

currently limited by the sampling rate of our AWG and could be further increased considering the large analog 

bandwidth of our EO modulators deep into the millimeter-wave band 34. 

We then plug our high-speed photonic-assisted image edge detector into a deep convolution neural network 

(DCNN)-based image segmentation model for outlining the boundaries of melanoma lesion in medical 

diagnostic images with superior processing speed, energy consumption and accuracy. When processing 

complex and often low-contrast medical images, the fuzzy boundaries between abnormal and normal regions 

could lead to predictions with compromised accuracies. This situation could be substantially improved by 
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feeding the DCNN with edge-detected information instead of original images, which can be integrated into an 

arbitrary encoder-decoder architecture in an end-to-end way for medical image segmentation process 46. Figure 

4b-c illustrates the flow diagram and working principle of the proposed edge-enhanced DCNN segmentation 

model that intakes raw RGB images and outputs segmentation results (see Methods). To optimize the 

segmentation model, we first train the model with concatenated dermoscope images and the corresponding 

melanoma edge information derived from simulated differentiation, emphasizing the representations around 

melanoma lesion boundaries. Based on the optimized model, the test dermoscope images are concatenated 

with experimentally extracted lesion edge information to generate the melanoma region prediction. Figure 4d 

shows the original melanoma lesion images captured from dermoscope, simulated and experimentally 

measured edge features, as well as the lesion regions segmented by our model, respectively. The tested average 

segmentation accuracy of our edge-facilitated model is 97.3 %, proving the effectiveness of the proposed 

photonic-assisted segmentation model. Most importantly, the demonstrated LN photonic-assisted image edge 

detector features much higher computation speed and lower energy consumption compared with other 

photonic platforms as well as traditional electronics (see Methods), which will pave the path for high-

complexity, high-throughput and real-time medical diagnosis tasks. The functional toolbox of our LN photonic 

image processing engine could be further expanded and parallelized leveraging the excellent scalability of our 

platform, leading to more advanced functions like matrix multiplication 10 and enabling a variety of future 

photonics-enabled AI and computer vision technologies. 
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Fig. 4. High-speed photonic-assisted medical image segmentation. a. Photonic-assisted image edge detection of a 250

×250-pixel ‘CityU’ logo. b. Flow diagram of the photonic-assisted image segmentation model. The edge features of 

melanoma legion images are extracted by our LN-based image-edge detector and passed through a DCNN-based 

segmentation model to obtain the lesion segmentation results. c. Schematic diagram of the image segmentation model. 

d. Examples of melanoma lesion segmentation results showing original dermoscope images, simulated and 

experimentally extracted edge features, as well as the lesion regions segmented by our model, respectively. 

Discussions 

In summary, we have designed, fabricated and demonstrated a high-fidelity and low-power-consumption 

integrated microwave signal processing system that performs temporal integration and differentiation 

operations for ultrahigh-speed electronic signals up to 256 GSa/s, enabling a variety of applications including 

ODE solving, UWB signal generation and edge detection of images. In particular, our photonic-assisted image 

segmentation model proves to be more powerful for disease diagnosis tasks, bringing exciting opportunities 

for intersections between integrated MWP technology and medical diagnosis. Our LN-based MWP system 
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exhibits significant and all-around performance edges in terms of operation bandwidth, processing speed and 

energy consumption compared with other on-chip and off-chip MWP platforms, proving an efficient and cost-

effective engine for future general-purpose analog signal processing and computing tasks.  

The performance of the current system can be further improved, by utilizing micro resonators with even higher 

Q factors 40 to prolong the integration time to nanoseconds 6, and MZIs with larger FSR to further increase the 

bandwidth of differentiation operation. The reconfigurability and programmability of our LN-based on-chip 

MWP signal processing system could be further enhanced by equipping thermo-optic or EO tuning sections 

on the processing blocks to allow real-time switching among processing functions and active tuning of the 

processing bandwidth for task-oriented applications 6,7,9. Adoption of multiple input/output ports with 

controllable (de-)multiplexers could enable parallel linear processing 52 and space-division multiplexing 53. 

Importantly, our demonstrated MWP system is highly compatible with other high-performance photonic 

components available on the integrated LN platform, such as microcombs 54, frequency shifters 42, and true 

delay lines 43, which could be further integrated towards even more advanced MWP functionalities. Meanwhile, 

we expect other components of the MWP system, such as low-noise laser sources, high-power handling PDs, 

electronic integrated circuits, and microwave amplifiers, could be assembled on the LN platform through 

heterogeneous integration schemes, leading to highly compact, cost-effective and high-performance integrated 

MWP systems for next-generation communications and information technologies.   
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Methods 

Design and fabrication of the devices: 

Devices are fabricated from a commercially available x-cut LNOI wafer (NANOLN), with a 500-nm LN thin 

film, a 2-μm buried SiO2 layer, and a 500-μm silicon substrate. SiO2 is first deposited on the surface of a 4-

inch LNOI wafer as etching hard mask using plasma-enhanced chemical vapor deposition (PECVD). Optical 

waveguides, MZIs and microring resonators are then patterned on the entire wafer using an ASML UV Stepper 

lithography system (NFF, HKUST) die by die (1.5 cm×1.5 cm) with a resolution of 500 nm. Next, the exposed 

resist patterns are transferred first to the SiO2 layer using a standard fluorine-based dry etching process, and 

then to the LN device layer using an optimized Ar+ based inductively-coupled plasma (ICP) reactive-ion 

etching process. The LN etch depth is ~ 250 nm, leaving a 250-nm-thick slab. After removal of the residual 

SiO2 mask and redeposition, an annealing process is carried out. Next, a second stepper lithography, metal 

evaporation and lift-off process are used to fabricate the microwave electrodes. The positive and negative 

electrodes are spaced by a gap of 5 μm to ensure strong EO coupling while minimizing metal-induced optical 

losses. Finally, chips are carefully cleaved for end-fire optical coupling with coupling loss ~ 4 dB per facet. 

Characterization of the building blocks for MWP signal processing:  

More details are presented here for the LN building blocks shown in Fig. 1. For optical characterizations, a 

continuous-wave pump laser (Santec TSL-510) is sent to the devices under test using a lensed fiber after a 

polarization controller to ensure TE polarization. The output optical signal is collected using a second lensed 

fiber and sent to a 125-MHz PD (New Focus 1811) for low-frequency measurements. The optical transmission 

of the racetrack resonator (waveguide width ~ 2 μm) is fitted by a Lorentzian function, with a loaded Q factor 

~ 3 million in the critical coupling state (Qi ~ 6 million), indicating a corresponding propagation loss of ~ 5 

dB/m.  

For the on-chip MZI modulator, the small-signal EO S21 response is measured by injecting small RF signals 

from a vector network analyzer (VNA, Keysight N5227B, 67 GHz) into the modulation electrodes via a high-

speed probe (GGB industries, 67 GHz) and monitoring the output signals captured by a high-speed PD (Finisar 

XPDV412xR, 100 GHz) at various frequencies at the other port of the VNA. RF cable losses, probe loss and 

PD response are calibrated and de-embedded from the measured S21 responses, showing 3-dB EO modulation 

bandwidths > 67 GHz. The modulator design includes tapered and micro-structured electrodes to fulfill the 

impedance- and velocity-matching conditions, simultaneously, while maintaining low RF loss 47. The 

measured low-frequency half-wave voltage (Vπ) is 2.6 V for a modulation length of 1 cm, corresponding to a 

voltage–length product of 2.6 V∙cm. 

For the on-chip phase modulator, an optical frequency comb consisting of 15 comb lines could be obtained by 

driving the modulator with a moderate 18-GHz microwave signal with power of 630 mW, corresponding to a 

total acquired phase shift of ∼ 1.05 π. The comb spectrum is measured by an optical spectrum analyzer (OSA, 

Yokogawa AQ6370). 

To implement temporal integration, a symmetrically over-coupled add-drop racetrack resonator with a free 

spectral range (FSR) ~ 80 GHz is fabricated, with a loaded Q-factor ~ 9×105 and near-unity on-resonance 

transmission measured at the drop port. For second-order integration, two cascaded racetrack resonators with 

different FSRs (80 GHz and 82 GHz) are designed to align the two resonance peaks via Vernier effect. The 

envelop FSR is measured to be 26.24 nm, which is in line with the design value. For temporal differentiation, 

the asymmetrical MZI and cascaded MZIs are designed with FSR ~ 200 GHz to provide a reasonable balance 

between operation bandwidth and differentiation slope efficiency. The spiral waveguides are designed with a 

minimum radius of curvature of ~ 100 μm to minimize the footprint and limit excessive radiation loss.   

Principles of the microring-based MWP temporal integrator and ODE solver: 

More details are presented here for the principles of microring-based temporal integrator and ODE solver. The 

integration results are represented in optical intensity changes on top of a DC intensity component when the 

amplitude modulator is biased at the quadrature point through a bias-tee, which are captured by an AC-coupled 

high-speed PD. The optical field right after amplitude modulation can be expressed as: 
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where β
 
is the modulation index defined as πVp/Vπ, Vp is the peak voltage applied to the driving electrodes, E0 

is the input electric field amplitude, φ0 is the bias phase of the amplitude modulator, which is -π/4 here, ω0 is 

the optical carrier frequency and x(t) is the normalized input microwave signal. Under small signal modulation 

(β <<1), the expression can be simplified as: 
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After Fourier transform, the input signal can be rewritten in the frequency domain as: 
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After going through the integrator/ODE solver with a frequency response of 𝐻(ω) =
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When performing integration operations, we use microring resonators with ultrahigh Q-factors (k ≈ 0), such 

that the output signal after inverse Fourier transform back to the time domain is:
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The output current of the PD could then be written as: 
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where   is the responsivity of the PD. Here the AC-coupled PD only responds to the third term in Eq. (6) 

since the first term is time-invariant and the second term is small for small signals. Therefore, the output signal 

of the PD directly corresponds to the integration result [ ( ) ( )outI t x t dt  ], which is generally the case for all 

field-to-intensity integration and differentiation results in this work. 

On the other hand, when the internal decay loss of the ring resonator is non-negligible (k  0), the output 

signal can be rewritten as:

 

 

0

0
0 0

1 1

0

2 2( ) ( )2 2( ) ( ) { }
( )

j t

out out

E e x t E

E t E
j k k

   


 

− −

 
  −
 =  +

− +  

0 0 0
0

2 2
( )

2 2

j t j tkt kt E
E e e e x t dt e

k

  −= +                                       (7)
 

The output PD signal is then:
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which is the solution of the first-order ODE solved in this work. 
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Principles of the MZI-based MWP temporal differentiators: 

More details are presented here for the temporal differentiator. After loading the electronic signal into LN 

phase modulator, the electric field can be expressed as:  
0 ( )

0( )
j t j x t

inE t E e
 +

=                                                        (9)
 

where β is the modulation index defined as πVp/Vπ. Here Vπ corresponds to the half-wave voltage of a phase 

modulator. We achieve field-to-field differentiation when the MZI-based differentiator is biased at the null 

point with a frequency-domain response of j(ω – ω0). The output signal in frequency domain can then be 

written as: 
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Converting the output signal back into time domain through an inverse Fourier transform yield:
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Here since the output differentiation result is represented as optical field without a constant DC component, 

the PD picks up the output intensity which represents the square of the calculated derivative:
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As a result, all measured signals for field-to-field differentiation processes in this work are positive only.  

On the other hand, we achieve field-to-intensity differentiation when biasing the MZI at the quadrature point. 

For simplicity, we assume the slope of the frequency response to be 1, in this case the output signal in 

frequency domain can be written as: 
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where ωn is the null point of the MZI-based differentiator. Converting the output signal back into time domain 

by an inverse Fourier transform yields:
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The output intensity captured by the PD is then:
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where only the third term is effectively picked up by the AC-coupled PD under small signal modulation (β<<1), 

similar to the field-to-intensity integration case. Therefore, the expression can be simplified as: 
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Methodologies of the integration, differentiation and image edge-detection experiments: 

In our experiment, different analog signals are pre-encoded by an arbitrary waveform generator (AWG, 

Keysight M8199A) and loaded into the LN-based on-chip MWP system using the same high-speed photonic 

chip measurement setup as discussed before. Continuous wave optical carrier from the tunable laser is first 

amplified using an EDFA (Amonics, C-band) before sending into the chip thanks to the high power-handling 

capability of our LN devices, therefore minimizing the additional noise from EDFA when amplifying small 

signals. The output light of the LN chip is detected by a high-speed photodetector (Finisar XPDV412xR) and 
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sent to a high-speed oscilloscope (Keysight UXR0592AP) for signal analysis. The frequency responses of the 

link components, including the AWG, cables, probes, adaptors and the oscilloscope, are calibrated and de-

embedded up to 62 GHz. For the temporal integration experiment, the analog signals are combined with a DC 

bias voltage through a bias-tee to keep the MZI modulator at the quadrature point. The laser wavelength is 

fine tuned to align with the corresponding operating wavelengths of the integrators and differentiators. For 

UWB generation, the output spectrum is measured using an RF spectrum analyzer (R&S, FSW43) from 100 

MHz to 15 GHz.  

The photonic-assisted image edge detector is based on the field-to-field differentiator, which benefits from the 

direct intensity detection at the PD. The image information is encoded into a time-domain signal by serializing 

the pixels into a sequence of pulses and output at a highest sampling rate of 256 GSa/s using the AWG.  

Analog signal processing bandwidth analysis: 

More details are provided here for estimating the actual processing performances of the LN-based MWP 

system beyond the analog bandwidth of our oscilloscope, by inputting sawtooth signals at different repetition 

rates. The ideal Fourier transform of a sawtooth signal (Extended Data Fig. 1a) includes infinite numbers of 

frequency components at integer multiples of the fundamental frequency (or repetition rate). The MWP system 

processing bandwidth could therefore be inferred from the number of harmonics preserved in the final optical 

spectrum and their relative strengths. In our system, the AWG and electronic accessories (cables, adaptors, 

and probes) could support the generation and delivery to the chip of signals at up to 67 GHz, while the 

oscilloscope could only record the differentiated signal in time domain up to a 62-GHz bandwidth. Meanwhile 

the processing bandwidth of our MWP chip should in principle be beyond 70 GHz based on the EO modulation 

bandwidth measurement. In Extended Data Fig. 1b, we list the 3-dB bandwidths of these components for 

reference. Extended Data Fig. 1c-d demonstrates the temporal differentiation results recorded by oscilloscope 

and their corresponding optical spectra for sawtooth repetition rates of 20, 22, and 24 GHz, respectively. At 

20 GHz, the temporal differentiation result shows good agreement with simulation result (red dashed) when 

considering only the first three harmonics, consistent with the measured optical spectrum showing three peaks 

at 20 GHz, 40 GHz, and 60 GHz. At 22 GHz, the temporal result shows substantial discrepancy (only one 

small lobe between the peaks) with the simulated result (two small lobes), since the oscilloscope is cut off at 

62 GHz and cannot effectively pick up the third harmonic component at 66 GHz here. However, we can still 

clearly observe the three harmonics in the optical spectrum with relative strengths in line with the simulated 

values (red solid), from which we could infer the actual temporal performance of our differentiator by 

comparing the spectral responses with simulation. At an even higher repetition rate of 24 GHz, the third 

harmonic component is submerged into the noise floor since this 72-GHz component exceeds the analog 

bandwidth of the AWG and is not effectively generated in the first place. In Extended Data Fig. 1e, we 

summarize the measured the optical power roll-off of the third harmonic component (blue dots) for sawtooth 

signals at fundamental frequencies from 19 to 24 GHz, which is consistent with the simulation results (red 

line) at least up to 67 GHz. Further de-embedding the frequency responses of the test equipment and 

accessories allow us to infer the on-chip processing performance (red circles), which is in line with the 

simulated trend up to 70 GHz. Therefore, we conclude that our device can faithfully perform MWP processing 

tasks for signals with analog bandwidths up to ~ 70 GHz. 
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Extended Data Fig. 1. Analog signal processing bandwidth analysis based on sawtooth signal. a Time- and frequency- domain 

representations of sawtooth signal. b Analog bandwidth limitations of various components in our experiment. c Measured temporal 

differentiation results (solid) of sawtooth signals at fundamental frequencies of 20, 22, and 24 GHz, in comparison with simulated data 

(dashed) taking into consideration the first three harmonics. d Measured optical spectra of the differentiated signals, in comparison 

with the simulated results (red). e Measured (blue dots) optical power of the third-harmonic component of differentiated sawtooth 

signals at frequencies from 57 to 72 GHz, together with inferred on-chip performances after de-embedding equipment responses (red 

circles) and simulation results (red curve). Osc., oscilloscope. Lim., limitation. Sim., simulation.  

Image segmentation model and training process: 

More details are presented here for the principle of image segmentation model shown in Fig. 4c. We follow 

the network structure of DeepLabv3+ 55, which is composed of an encoder and a decoder. The former 

incorporates a ResNet10156, Atrous Spatial Pyramid Pooling (ASPP) 55, and a 1×1 convolutional layer (conv) 

to extract deep features. The latter aims to recover the original image resolution and produce segmentation 

results. To optimize the segmentation model, we first collect simulated edge data for each medical image, 

which are concatenated together to feed into the encoder of the segmentation model, emphasizing the 

representations around melanoma boundaries. The deep features extracted from the encoder are then bilinearly 

up-sampled by a factor of 4 and concatenated with the corresponding low-level features from the ResNet101 

backbone, which can preserve the detailed texture information, such as edges. These concatenated feature 

maps are further passed through a 3 × 3 convolutional layer, followed by a pixel-level classifier and a bilinear 

up-sampling operator, thereby deriving segmentation predictions. The obtained predictions are constrained by 

the dice loss 57. By minimizing the dice loss, the optimized model has the ability to outline melanoma lesions 

given any test dermoscope images.  

In implementation, we firstly construct a training dataset with 1000 dermoscope images 58, together with the 

corresponding simulated edge information and melanoma segmentation ground truths. Each dermoscope 

image is concatenated with its simulated edge data, and then the concatenated data are passed through the 

cascaded encoder and decoder of the segmentation model, obtaining segmentation prediction from the output 

of the decoder. The resulting prediction is supervised by the corresponding segmentation ground truth through 

minimizing the computed dice loss. Our method is implemented with the PyTorch library. The input images 

are uniformly resized to 250×250 for training. The stochastic gradient descent optimizer is adopted with an 

initial learning rate of 10-5 for the pre-trained encoder and 10-4 for the rest trainable parameters within the 

segmentation model with random initialization. Polynomial learning rate scheduling is adopted with the power 

of 0.9. We choose a batch size of 8 and the maximum epoch number of 200 to guarantee the convergence of 

training. 
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Error analysis and performance evaluation:  

All error analyses in this work are performed by calculating the mean absolute error (MAE) between the 

experimentally measured results and the ideal ones within the differentiation/integration time. We model and 

analyze the errors mainly from three sources: i) The limited bandwidth of measurement devices. In our 

measurement setup, the oscilloscope does not faithfully capture the high-frequency components of the output 

signals, resulting in the distortion of output signal in time domain, as illustrated in Extended Data Fig. 2a in 

the case of an 8-ps Gaussian pulse. We expect the MAE to decrease from 5.8 % to 1.3 % if the ideal test 

equipment is used. ii) The possible drift of device operation points. Extended Data Fig. 2b demonstrates the 

simulated output result where the bias point for field-to-field differentiation drifts slightly by 3 MHz, which 

clearly exhibits an asymmetric doublet pulse for a 30-ps input Gaussian pulse. iii) The intrinsic processing 

bandwidths of the proposed integrator/differentiator devices, which are usually limited by the FSRs of the 

microring or MZI. As shown in Extended Data Fig. 2c-d, taking a short Gaussian pulse as an example (under 

the ideal test equipment), the pulse bandwidth is much broader than the FSRs of the ring-based integrator (80 

GHz) or the MZI-based differentiator (75 GHz), as illustrated in the right insets, leading to clear distortion of 

the processing results.  

 
Extended Data Fig. 2. Error analyses based on simulated output signals with considerations of various practical limitations, including 

a limitation of equipment bandwidth, b drifting of device operation point, as well as the processing bandwidth limitations of the c 

MZI-based differentiator and d ring-based integrator. F.R., frequency response of the devices. 

In real applications, the proposed high-speed microwave signal processor should support accurate signal 

processing within a broad bandwidth. To evaluate the error performance over a broad bandwidth, we take the 

ultrahigh-speed differentiation system as an example. The measured frequency response of the device is 

utilized for error analysis. The simulated MAE values of the functional devices (Extended Data Fig. 3) at 

different cut-off frequencies of Sinc pulses are analyzed firstly by assuming ideal measured equipment (red 

curve) and then by considering our current equipment bandwidths, consistent with our measured error 

performances (blue crosses and purple stars). Low computation errors of less than 4 % (dash line) could be 

maintained within broad bandwidth for the differentiator. The proposed MWP signal differentiators can 

accurately operate up to ~ 100 GHz assuming ideal test equipment.  
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Extended Data Fig. 3. Simulated and measured mean absolute errors as functions of the cut-off frequency of Sinc pulse for the 

temporal differentiator. 

Performance comparison with electronic computer-based algorithms and hardware 

Extended Data Table 1 lists a detailed performance comparison between traditional electronics-based 

algorithms (including convolution-based and simple differentiation-based algorithms) and our photonic-

assisted segmentation model. The performance metrics include raw lesion edge detection accuracy (from the 

edge detectors only, before DCNN), final segmentation accuracy (after DCNN), computation time, and energy 

consumption. The accuracies of lesion edge detection and segmentation are measured by dice coefficient. 

Extended Data Fig. 4 shows the raw edge detection results of an example lesion image using different 

processing methods, together with the ground truth. Our photonic edge detector shows a better raw edge 

detection accuracy (21 %) than those of both convolution-based (18.1 %) and differentiation-based (12.8 %) 

algorithms, mainly because it picks up less false-positive details inside the lesion region. The final image 

segmentation accuracies are above 95 % for all three methods but with drastically different processing time. 

For edge feature extraction of a 250×250-pixel image, our device consumes a total computation time of 244 

ns, above three orders of magnitude faster than performing a traditional convolution algorithm on a generic 

personal computer (380 μs).  

Extended Data Table. 1. Performance comparison with traditional electronics-based algorithms 

 Differentiation algorithm # Convolution algorithm # This work 

Raw lesion edge detection * † 12.8% 18.1% 21% 

Segmentation accuracy* 95.6% 95.9% 97.3% 

Computation time 120 μs 380 μs 0.244 μs 

Energy consumption 201 nJ 1227 nJ 3.76 nJ 

* Detection and segmentation accuracies are measured by dice coefficient. 
† Raw detection accuracy right after edge detection algorithms, before entering DCNN. 
# Electronic computer-based algorithms are processed by Intel Xeon(R) Gold 5215 CPU. 

 
Extended Data Fig. 4. Edge-detection results of a representative melanoma lesion image. a. Raw image. b-d. Edge-extracted images 

using convolution (b) and simple differentiation (c) algorithms in electronic computers, and our photonic-assisted edge detector (d). 

e. Ground truth. 

When estimating the energy consumption of electronics-based edge detection, we realize the challenges of 
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quantifying the exact power consumption of DSP at the chip level, and only provide a lower-bound estimation 

by calculating the power consumed on the basic multiplication and addition operations of the edge-detection 

algorithms 59. The energy consumption could be estimated as: 

 [ ( 1) ] ( 1)ele M A AE T M N E N E T M E=    + −  + −                                            (17) 

where T is the kernel number, which is typically 4 for a convolution algorithm and 2 for a differentiation 

algorithm. M is the image pixel number, which is 250×250 in this case. N is the kernel size, which is 9 for 

the convolution algorithm and 3 for the differentiation algorithm. We assume 7 nm CMOS node is used for 

DSP chips, with an energy consumption per multiplication operation EM ~ 486 fJ/b and an energy consumption 

per addition operation EA ~ 60.8 fJ/b 60. Therefore, the estimated total energy consumption for convolution 

algorithm is ~ 1227 nJ and for differentiation algorithm is ~ 201 nJ. 

For our photonic-assisted method, we estimate the comprehensive energy dissipation of our demonstrated 

MWP system by calculating the energy consumptions of the laser, EDFA, modulator as well as PD 37,59-61. The 

equations used and values estimated are listed in Extended Data Table 2.  

Extended Data Table. 2. Estimated energy consumption of the photonic-assisted image edge detector 

Component Equation Energy consumption 

Laser Elaser= [(Plaser+PTEC)/𝜂] ·t 1.87 nJ 

Modulator (on-chip) Emod=(VP
2/2R)·t 0.61 nJ 

PD 
EPD= 

bias recV p

B


·M 

0.44 nJ 

EDFA EEDFA= 
𝜆𝑠

𝜆𝑝
[(𝑃𝑜𝑢𝑡

𝑠 − 𝑃𝑖𝑛
𝑠 )/𝜂] ·t 0.84 nJ 

Total Elaser+Emod+ EPD + EEDFA 3.76 nJ 

                                                           

Here Elaser is the energy consumption of the pump laser, considering an optimized input optical power Plaser of 

1 mW and a thermo-electric cooler (TEC) module (for stabilizing the laser wavelength) power ~ 1.3 mW 62, η 

is the wall-plug efficiency ~ 0.3, defined as the energy conversion efficiency from electrical power into optical 

power, t ~ 244 ns is the processing time for the image edge detection task. Therefore, the consumed energy of 

Elaser is 1.87 nJ. Emod is the energy consumption of the EO modulator, which intakes a driving peak voltage of 

Vp = 500 mV (small-signal modulation) and consumes an average power consumption  
𝑉𝑝

2

2𝑅
  of  = 2.5 mW, 

where R = 50 Ω is the load impedance of the modulator 37, leading to an Emod of ~ 0.61 nJ within the processing 

time. EPD is the energy consumption of the PD, which could be estimated as 
bias recV p

B


 61, where   is the 

responsivity of the PD ~ 0.6 A/W, Vbias is the PD bias voltage ~ 3 V, prec is the received optical power ~ 1 mW, 

B = 256 Gbit/s is the information bit rate, M = 250×250 is the image pixel number, leading to EPD ~ 0.44 nJ. 

For the EDFA, the energy consumption could be estimated by 
𝜆𝑠

𝜆𝑝
(𝑃𝑜𝑢𝑡

𝑠 − 𝑃𝑖𝑛
𝑠 )/𝜂 · 𝑡 63, where 𝜆𝑠  is signal 

wavelength ~ 1550 nm, 𝜆𝑝 is the pump wavelength ~ 1480 nm, 𝑃𝑜𝑢𝑡
𝑠  and 𝑃𝑖𝑛

𝑠  are output signal power ~ 0 dBm 

and input signal power ~ -20 dBm respectively, η is the wall-plug efficiency ~ 0.3, leading to EEDFA ~ 0.84 nJ. 

Therefore, the total energy consumption of our LN-based MWP system is estimated to be ~ 3.76 nJ. 

Performance comparison with previous literatures and other MWP platforms 

Extended Data Table 3 lists the detailed performance comparison among previously demonstrated all-optical 

processors, off-chip modulator-based MWP systems, an estimated all-Si integrated MWP system (since such 

demonstrations have not been reported), and our LN-based integrated MWP system. The performance metrics 

include MWP processing bandwidth, shortest processed input pulse length, highest demonstrated sampling 

rate of analog signals, and estimated energy consumption for image edge-detection tasks. For all-optical signal 

processors, the input pulses are generated by mode-lock lasers with pulse shapes limited to simple Gaussian 
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or Gaussian-derived waveforms, which is hard to realize the complicated and arbitrary signal processing tasks 

demonstrated in this work. In other on-chip and off-chip MWP demonstrations, the processing bandwidths are 

generally limited by the EO modulator (whether off-the-shelf LN modulator or Si modulator), restricting the 

shortest processable input pulses to several tens of picoseconds. Furthermore, we estimate the energy 

consumption required in these previously demonstrated systems, assuming similar optical pump power, EDFA 

power, EO modulation depth, and PD performances, based on the methodologies and equations given in the 

above section and in Extended Data Table. 2. It should be noted that additional DC energy consumption is 

included for Si modulators due to the requirement of a reversed bias voltage 64. As can be seen from Extended 

Data Table 3, our proposed LN-based MWP system, benefitting from the broadband, low-voltage, and linear 

EO responses, together with low optical loss and excellent scalability, exhibits significant breakthrough in 

terms of working bandwidth, processing speed and energy consumption compared with other MWP 

demonstrations. 
Extended Data Table. 3. Performance comparison with previous MWP demonstrations 

 
MWP system 

bandwidth 

Shortest 

processable 

input pulse 

Compressed 

pulse by 

nonlinearity 

Sampling rate 

of analog 

signals 

Energy consumption 

for image edge 

detection tasks 

All-optical signal 

processor 

N/A 33 ps 6 N/A N/A N/A 

N/A 250 fs 28 N/A N/A N/A 

N/A 7.5 ps 27 N/A N/A N/A 

Off-chip modulator 

+ on-chip signal 

processor 
30-40 GHz (typ.) 

40 ps 21  N/A 65 GSa/s 21 

22.05 nJ (est.) 
30 ps 20 18 ps 20 N/A 

85 ps 8 N/A 65GSa/s 8 

N/A 5.4 ps 26 N/A 

290 ps 9 N/A N/A 

All-Si platform (est.) 33 GHz 3 N/A N/A 50 GSa/s 3 128.65 nJ (est.) 

This work > 67 GHz 9.6 ps N/A 256 GSa/s 3.76 nJ  

typ., typical; est., estimated; N/A=Information not available or not applicable 
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